Indian Statistical Institute, Bangalore

B. Math. Second Year Second Semester - Graph Theory Duration: 3 hours

Mid-Semester Exam

Date : March 03, 2015

Max Marks: 100

- 1. (a) If G is a graph with n vertices and $e \ge 1$ edges, and $d_1 \ge ... \ge d_n$ are the degrees of its vertices, then what are the possible values of the ratio $\frac{d_1 + ... + d_n}{e}$?
 - (b) Show that any tree with at least two vertices has at least two leaves. [10+10 = 20]
- 2. What are the values of n for which the complete graph K_n is planar? [20]
- 3. (a) Define the graphical metric d_G of a connected graph G. Prove that it is really a metric.
 - (b) Let $2 \le k \le \frac{v}{2}$. Consider the graph G = J(v, k) whose vertices are the k-subsets of a v- set; two vertices A, B are adjacent if $\#(A \cap B) = k 1$. Show that $d_G(A, B) = \frac{1}{2} \#(A \triangle B)$ for any two vertices A, B of G. [8+12 = 20]
- 4. A perfect matching in a graph is a partition of its vertex set into edges. A factorisation is a partition of its edge set into perfect matchings.
 - (a) Find the total number of perfect matchings of the Peterson graph. Does it have a factorisation?
 - (b) Show that the complete graph K_6 has a factorisation. [10+10=20]
- 5. (a) Find all the connected graphs with maximum degree = 2.
 - (b) Find all the self-complementary graphs on at most five vertices. [10+10=20].